Schematics of delabs

One of the oldest Schematic Archives on the Web. It was in the form of pdf files in the late 90s. Instrumentation and Industrial Designs by delabs and Generic Application Designs.

Search This Blog

Thursday, February 20, 2020

Triac based Lamp Dimmer power control

This is a phase angle control of a Triac which is a evolution from an SCR. The 50 Hz or 60 Hz Sine wave of mains can be turned on at any point after the Zero Crossing.

Design Notes - Power Electronics - 03

Triac based Lamp Dimmer power control

The Voltage ramps up in the sine wave which gives a near "Linear" slope which can be used to trigger the ON at a time delay after zero crossing when the voltage is zero. This is like a PWM but works on low frequency only. Some of the early SMPS(HV for TV and Mains Inverter) by Siemens were built around SCRs. Turning off a SCR is a difficult job for a designer, MOSFETS and IGBT are now used for PWM drive stages.

High Energy Circuits

You can use it with a bulb to vary brightness of bulb, this is a live circuit it can give a shock, enclose in plastic box, the pot should have a plastic knob, use a fuse, you can also use it for temperature control of soldering irons.

Monday, February 10, 2020

Solid State Relay - Common

This is a DC controlled Solid State Relay which can turn 230V AC equipment on and off. The output is like a NO normally open contacts of a relay and have to be in series with the Load like any other switch.

Solid State Relay - Common
This should not be used for large inductive loads like big motors. The Q1 transistor limits the current thru the LED by providing an alternate path for more current. The DC input can be from 3V to 20V.

The Triac can be chosen depending on current in the load. Look for datasheets and applications at STMicroelectronics for BTA41600 triacs. MOC3041 zero crossover opto-diacs.

Read more at my main page - Solid State Relays - SSR I used to make them long ago.

Thursday, February 06, 2020

Switching Battery Charger with L296

This is a a circuit from my  Power Supplies Section.  There may be some documentation errors in my circuits. If you are used to building and troubleshooting circuits then it is ok.

This circuit is derived from an application note of L296, It is a Power Switching Regulator from ST Micro. U1A is wired as a differential amplifier and U1B a High Gain Comparator. C4 and C5 are parallel for lower ESR. Equivalent series resistanc Fast switching diode used is BYW80.

Switching Battery Charger with L296

L296 is a switch mode power controller here. In this NTE327 or 2N5038 is used to boost the current output. This transistor is both high current and fast switching. U1A, LM358 measures the load current by reading the voltage across shunt R6 and compared to a current limit setting at R14 using U1B to give a load current control. R7-R8 give a voltage feedback for voltage limit.

Use MFR 1% for all Resistors, 33E means 33 ohms, 22K means 22 kilo ohms, 1M is 1 megohm. 10T tp means ten turn trimpot. "Analog Ground" and "Digital Ground" must be linked at power supply only, avoid loops, let grounds radiate from a ground plane. Unused inputs of logic and opamps pull up or down to avoid oscillations and noise