LED Voltage Level Indicator
BC547 is like 100mA-40V-200b, Limit collector current to 60mA, use it at less than 25V and depending on the individual transistor you may get a DC current amplification of 200 times. That is 1uA of base-emitter current could give a whooping 200uA of collector-emitter current.

Still Thinking we do not have the Lower-NPN we calculate the resistor. Vcc - ( 2 LEDs * 1.7) - Vce = Vr that is the voltage across the resistor. You know ohms law and the current needs to be 15mA for a bright and long lasting LED. Lastly 1.7 the forward drop of a green LED and 0.6 a saturated or Turrned-On NPN Vce.
Mains Voltage Current LED Indicators
Now you use the Lower-NPN, The above calculations do not hold anymore. Let us think a small current is flowing in the LED. Then the voltage across R is less than 0.7V, that means base-emitter diode of the Lower-NPN will not get to conduct. The Collector does not draw any current away. Now think that more current flows in LED, the voltage across R builds up above 0.7V the Lower-NPN is biased. The collector of Lower-NPN starts drinking current from the base of the Upper-NPN. So The Upper-NPN starts losing its bias. This lowers the LED current and contains, regulates or controls the LED current as shown in the formula.