## Schematics of delabs

One of the oldest Schematic Archives on the Web. It was in the form of pdf files in the late 90s. Instrumentation and Industrial Designs by delabs and Generic Application Designs.

## Tuesday, August 16, 2016

### Single Digit Voltmeter with LM311

I wanted to design a logic probe as a tutorial, but there were many good ones in the web so i have tried to design a single digit voltmeter. This circuit is a design, i am unable to test it now, later if i test it and find mistakes i will update this page. You can help me by pointing out the errors.

First bear it in mind that it is a single digit voltmeter which is 0-9 counts only on the positive side, that is it can measure +0 to +9V DC +/- 1V error. That may not be practical for the cost of the components above. It may be used as a toy logic probe. The reason for the circuit is not for usage, but to give design ideas. The methodology used is Gut Feel - Thumb Rule method.

## Sunday, August 14, 2016

### LED Voltage Level Indicator

This circuit is derived from a Siemens Application Note 1974. This circuit uses common components of today.

The circuit is here as it is of high educational value. I have not tested it. You can 'simulate and test' or 'wire it up and try' and let me know how it worked. The Circuit is also a simple analog to digital converter. You can use optos in place of LEDs.

Battery Level Indicator

T1 and T2 make a differential amplifier. T3, T4 and T5 driving the LEDs are comparators.  When input voltage is increased T1 is turned on which leads to more base current for T3 which Lights LED1. When input voltage is less T2 turns on as it gets a better base current from P3 which turns on LED2 via T4. When both LEDs are off T5 gets biased as no drop across R5 which lights the LED3 thru T5 hopefully.

What you need to know is a small current Ib thru the base-emitter path in the direction of the emitter arrow will lead to a large Current Ic thru the emitter-collector path in direction of arrow. Ic = B * Ib where B - beta is the DC current gain, it could be 100-400

Fluid or Water Level with Reed Relays

Beta is different in each transistor you buy and varies with the test conditions and even with temperature and age. The LED1 and LED2 will indicate above or below Limits set by P2 and P1. The Limit Threshold itself is set at P3 i think. LED3 will light when Hi LED and Lo LED both are off.

The applications of this circuit are FM tuning indicator, Stereo Balance Indicator (Wire T2 like T1 then we get two channel inputs) and battery level indicator.

## Saturday, August 13, 2016

### 5V -1A Power Supply using LM2575

A Power Transistor which is having a drop of 4 Volts across it and passing 3 amps thru it, may dissipate around 12 Watts of Heat, This is the problem in Series Regulators. While a Saturated Transistor or Mosfet with 1 Volts across and 3 Amps Thru will be just 3 Watts. But then a fully on transistor or mosfet cannot be controlled or regulated, for that we turn it ON and OFF very fast so that the right amount of current or voltage is delivered.

Power Electronic Circuits

The way this is done is PWM - Pulse Width Modulation. In this the mosfet or transistor is switched ON-OFF at say 100 kHz, but the ON duration is varied to control the output. The longer the duration of ON time more energy or punch is transferred. Switching losses will be present depending on how fast the rise and fall times of the pulses are.

The Pulsed AC or Chopped DC can be smoothed to the Average with Inductors and Capacitors. The reactive pulses of the Inductor has to be absorbed by a Schottky Rectifier 1N5817 -- 20V-1A fast switching diode with low switching losses.

This circuit is derived from an application note of LM2575, It is a Power Switching Regulator from National Semiconductor The details are here LM2575