Schematics of delabs

One of the oldest Schematic Archives on the Web. It was in the form of pdf files in the late 90s. Instrumentation and Industrial Designs by delabs and Generic Application Designs.

Search This Blog

Wednesday, November 11, 2015

Sample and Hold with Standby CD4053

A, B, and C are the Digital Control for x, y and z input and output pairs.The voltage at Vinx is stored in C1 when A goes high, when A is low the voltage stored in C1 is read by buffer U2A.

It could be used in DMM circuits as Analog Memory DMM range, AC-DC mode, logic control

Sample and Hold with Standby CD4053

Another application of  Mux 8 Channel 4-20mA Analog Multiplexer

The stby or standby input should be low when sample and hold is operating. If stby is taken high then C1 Cap is isolated and leakage is minimum. The supply of +/- 7.5V is chosen as OFF resistance of 4053 is high at this supply.

Monday, November 09, 2015

Flashing Mains Neon Lamp

Here is a Neon Flasher circuit (untested) for a user request at Circuits FAQ. This can be built into a switchboard or a gadget for indicating Live Power.

Flashing Mains Neon Lamp

D1-C1 form a simple half-wave rectifier, The Cap charges to peak voltage and can store charge for a long time if there is no bleeder. So while building it take extra care. This forms a DC supply across C1. C1 is a Plastic High-voltage cap, IN4007 has a 1KV rating, so it is ok for 230V rectifier.

See more of my Home Made Circuits.

R1 Charges C2 and when C2 reaches 60-80V depending on Neon, the neon breaksdown. C2 Discharges, Neon Recovers, The C2 starts charging again and so on and on. It Oscillates, probably in a Ramp Waveform. But do not use your Scope on this, you will regret it a lot. This is a live circuit and needs a special probe.

"Oh, i will put the probe it in 10M mode" will not do. The ground clip of the probe goes to Electrical Earth which is 'connected' to Neutral in the mains wiring. So you put the earth crocodile clip on the live point. There will be flashes and fireworks. So you need to isolate both terminals of scope. Please use your costly equipment with great care.

For the 1 Meg use two 470K in Series for 230V AC, that is safer. The circuit is live, so take precautions. The 0.47 Micro Farad can be increased if you want a slow flash. If the Mains 50/60 Hz Flicker is too much, the 1 uF can be made 2 uF, or use 4 - 1N4007 as a bridge rectifier.

User Feedback -

R1 of 4.7M and C2 of 0.47uF Works well at 230V AC. Try your own Combination. Less than 1M may damage Neon.

Tuesday, November 03, 2015

Digital gain control of Opamp

The gain of U1 can be controlled by a digital binary 1248 nibble at ABC. The gain at digital 000 is unity or 1 and the gain at various stages are set by 4051.

Precision Attenuator with Digital Control - delabs

There are eight different gains as the steps of gain resistor network is chosen by 4051. The on resistance of 4051 channel around 100E gets added to U1 pin 2 internal impedance.

Digital gain control of Opamp.

Auto ranging 4-1/2 Digit Digital Voltmeter - delabs

You can use separate resistor networks with trimpots for each channel if you require but keep the networks total burden on U1 pin 6 to around 10K, not less than than. You can use this to set the gain of a amplifier with the help of a microcontroller.

If you have any IC with Analog FET Switches, you can adapt this design for that. The Cross-talk should be less and On-Resistance as low as Possible. Off Resistance as High as possible.

Wednesday, October 07, 2015

PLL using 4046 - Phase Locked loop

CD4046 is a PLL or phase lock loop, it mainly consists of a VCO and phase comparators. This is a component in FM demodulation and modulation.

Mixed and Interface Circuits

PLL using 4046

It is used in a closed loop control to maintain a stable frequency. The Circuit above is good for learning the full use of a small Dual Trace Scope. The Circuit has both Analog and Digital areas and is a part of communication.
Read the pages above for building more Knowledge on PLL

Monday, October 05, 2015

Thermocouple Amplifier Standard

Thermocouple is the most common sensor in Industrial Temperature Measurement. The Signal Conditioning involves Cold Junction Compensation and High Gain DC Amplification. The output of a Themocouple is in millivolts. 

The OP07 is a low offset 75uV opamp, here it is used to amplify the output of a Thermocouple, the gain of this stage is high. The zeners are to protect any high voltage at input zapping the opamp.

Thermocouple Amplifier Standard

The Resistor R6 limits the current. The zeners should be low leakage or use clamping pull-up and pull-down diodes to +5 and -5 respectively.

The RC low-pass filter formed by R6 and C2 reduce the mains hum or 50 Hz pickup of long thermocouple cables laid close to high current heater wiring. R1 is a offset null use or add if required. R11 is gain control of OP07. The TL072 is a FET input opamp used here as a summing amp.

Blind Dial Proportional Temperature Controller

Adding one more inverting amp with some gain to the output of this circuit can give you a 1-5V suitable for ADC or PC analog I/O cards. C1 also serves to filter, it is an integrator here. It suppresses EMI and RFI from motors, contacters etc., R13 sets an output value for 0mV input.

Tuesday, September 22, 2015

AD590 based Temperature Sensor

Learn how to use the AD590 to measure environment temperatures for display, logging or cold junction compensation.

The voltage at the point 1 of R4 will be :Vo=( 1+ ( 10K/22K)) * Vref = 3.63V as nominal Vref is
2.5V.AD590 is a current source which gives 1 uA / kelvin, It is independent of the voltage across the device. you can treat it like a current source or sink or impedance. total voltage across AD590 is 5V as opamp pin 2 is at virtual ground.

Analog Circuits - OpAmp, Signal Condition, Mixed Signal.

AD590 based Temperature Sensor

This is the way you try to understand the design.


The AD590, here is a constant current sink as cathode goes to -5. The current it sucks away or drains from node pin 2 of OP07 is 1uA/ kelvin. at 0 deg C the current drained is 273 uA at 26 deg C it is 300uA.

You know according to theory that the amount of current entering the node, is equal to the amount of current leaving the node. do not look at voltages now, look at the currents. the AD590 drinks 273uA from Node pin 2 of OP07 at 0 deg C. Now no current can come from opamp OP07 pin 2 as resistance is in giga ohms and leakage in pico amps. now the pot R5 and resistor R4 are just in series and connected to 3.63 V as established earlier. The TL431 is a shunt regulator with reference and has a low impedence. Now the R5 + R4 combination should not load the TL431, that is not the case as 3.6 / 10K = 360uA .

By varying R5 pot you can pump 3.6 / 10K = 360uA down to 130uA when R5 is max into node pin 2 of OP07. This pot will be calibrated with AD590 in ICE to give a 0 mV output of the Op07. When calibrated R5+R4 pump 273 uA into node pin 2 of op07. this is sucked away by the AD590 which is draining 273uA at 0 deg C. This leaves the pin 2 at zero potential as currents leaving = currents entering.

Now to understand the opamp functioning.

The pin 2 of opamp is a 0 potential as calculated above and pin 3 also is at zero pulled down by R7. Now as both inputs are at same potential the output of opamp also is zero. The feedback resistors R1 and R2 will carry no current as both their ends are at 0. the Vout is now 0 mV and AD590 is on a block of ICE and opamp is stable.

If pin 2 (-) becomes more dominant or positive than pin 3 (+) the output swings negative. If pin 3 (+) becomes more dominant or positive than pin 2 (-) the output swings positive. The opamp on feedback tries to maintain both the inputs at the same potential. This thumb rule can be used to make opamp oscillate, amplify or compute.

Now what happens when the AD590 is removed from the block of ICE. It comes to room temperature say 26 deg C which means 300uA. Now the AD590 demands to draw 300uA from node pin 2 of OP07. The R4 + R5 from 3.6 V can give 273uA as it is fixed, not a uA more. The rest which is 300 - 273 = 27uA leads to a drop in potential at pin 2 and it turns negative. as demand is greater than supply. which makes pin 3 which is at zero more positive than pin 2. ( theory : 0 is positive compared to -1) as pin 3 is more dominant opamp swings positive as per thumb rule. and a current starts flowing thru R1 + R2 till the current reaches 27uA. at this point the extra current 27uA drawn by AD590 is supplied by opamp thru R1+R2. The Pin 2 now comes to 0 as currents leaving = currents entering.

Test & Measurement, Instrumentation

At this point the voltage at opamp output is given by ( R1 + R2 ) * 27uA = 270mV (assume R1+R2 is 10K after calibration) now opamp gives 10mV per deg C.as opamp now is a closed loop control the rise and fall in temperature, results in AD590 current variation which produces a proportional OP07 output.

Now the explanation above is in steps but all that happens in real time in an instant.

Monday, September 21, 2015

FET Current Source and MOSFET

This is a constant current source using a FET. This is the most simple replacement to series resistor to limit current. The N-Channel FET BF256C can give 15mA current.


Simple Methods

Before you get to use chips, experiment with some methods, which will help you learn about the LEDs better. The first is just One Resistor in series. This is to Limit the max current in a Series LED Chain. If you have a Regulated Supply with a Fixed Voltage, then you can use this method.

Let us take a 12V SMPS, Each HB White LED has a drop of around 3.2 (please see datasheet). If you put 3 LEDs in series it is a drop of 3 X 3.2 = 9.6 V.

12V - 9.6V = 2.4 V. This is the drop across the Resistor, let us keep the current at 20mA for a Long life for LED. Some LEDs will get damaged at 30mA some take more that that. We now have LED Modules which can take even 1 or 2 A.

V/I = R as per OHM. 2.4V/20mA = 120 E or Ohms.

How Hot? W = VI Power in Watts. 20mA x 2.4V = 48mW. This is where you lose the Money. Keep it low, else the Green Goblin will frown. Unless you want LED Lighting to double up as a Room Heater, Nice idea if you are in the Artic.

Now you have a chain of 3 LED with one R, make many such chains and put it in parallel to around 70% of SMPS capacity. If you have 20 Strips of 3 LEDs each, 20 X 20mA = 400mA. You will need a 12V 600mA SMPS .

MOSFET Drive for LED Constant Current

Let us assume, you have a supply that is varying and not stable. Then use a SMPS and Resistor as shown above. Closely matching the LED Chain to the SMPS voltage to keep the heat loss minimum. At Low voltages the above idea may not work. So you can try a MOSFET circuit shown.

You can use Transistors too but The Heat is more, as the Drop is more. When you use batteries, you cannot afford to lose even 0.5V. So the MOSFET is the answer.

This circuit is a nice design idea about LED drive with low voltage and watts burden. In combination with a Joule Thief - and PWM you can make many White LED utilities like Lanterns and Flashlights. PWM is to modulate brightness and also Extend LED Life.

The Essence is The LED has to have a long life, constant current is the answer. The Efficiency has to be High, Switching MOSFET is the answer. For just a LED or Two, you do not need to bother about Efficiency, but Constant Current, No Compromise. Why? Because it is in the Absolute Maximum Rating.

"You do not cross the road, when the light is RED. You do not Drive Faster, than the Speed Limit. You do not Eat, more than you can Digest.You do not Stress the Absolute Max in the Ratings."

The Elektrik Jedi
Read More

    Sunday, September 06, 2015

    VCO with LM331

    This Circuit is a simple Analog to Digital Interface with a capability of 10 to 12 bits resolution. 10 bits means 1024 counts or parts of a full scale FS which is close to 3-1/2 1999 counts.

    VCO with LM331

    In this 1 V can be read as 1.000 V that means even 1mV can be resolved for FS of 1V. The Caps C6 and others must be plastic multilayer low-leakage types for accuracy of reading. Use all 1% MFR 100ppm or better resistors, Design gain of U1B for the Full Scale you want.

    Mixed Circuits Analog with Digital

    The Output Fout is a Frequency which is directly proportional to the measured voltage Vin. The pulses can be isolated using opto-couplers to avoid ground loops or electric hazard. An additional protection and scaling circuit at the input may be required for some sensors.

    Wednesday, July 08, 2015

    Mains Current Indicator with a LED

    This is a mains 230V AC load current indicator and is a LIVE CIRCUIT, so take care. The Resistors have to be a fusible ceramic wire wound.

    More at Mains Voltage and Power Circuits

    Mains Current LED Indicator

    This circuit has been drawn from my memory and i have not tried it out again, just see if it is ok and then try. You should use the fuse of 1A a slow blow if you want but it is very important. You can design the shunt R3 and Fuse rating as required by your load.

    Note that this circuit is to be put in series with the load like an ammeter. If you put it across the supply like a voltmeter it will fuse out or burn out. This circuit has to be enclosed in a plastic sealed enclosure to avoid contact.

    Mains Voltage Indicator with a LED

    This is a mains 230V AC voltage indicator and is a LIVE CIRCUIT, so take care. The Resistor has to be a fusible ceramic wire wound and the capacitor 630V AC or higher capacity.

    More at my Home Made Circuits.

    Mains Voltage LED Indicator

    This circuit has been drawn from my memory and i have not tried it out again, just see if it is ok and then try. You should use the fuse of 100mA a slow blow if you want but it is very important. This circuit has to be enclosed in a plastic sealed enclosure to avoid contact.

    Wednesday, June 10, 2015

    Digital to Analog with R2R Ladder Network

    This is a R-2R Digital to Analog Converter, It converts a byte (8 bit) to a analog value. It has 256 levels including zero.

    This was the first Digital Pot i Built decades back - Digital Potentiometer

    This can be used to convert a byte sent from a microcontroller to a analog value like say 1.51 V. At full scale, when all 8 bits are high calibrate to give 2.55 V then ever bit increment is 0.01V, 10mV steps.

    Digital to Analog with R2R Ladder Network

    If the eight bits inputs are from a counter you then will see a staircase waveform at output, each step being 10mV higher or lower depending on whether the counter is counting up or down.

    The accuracy of the analog output depends on the resistor ladder. The OP07 has an offset error of about 70uV only. The 74HCT373 power is derived from LM336 a stable reference so that the D-A is accurate. The 8 bit data can be latched with the 74HCT373 to get a stable analog value for control systems.

    See another circuit in which both these ICs are used Mini RTD Pt-100 Three Wire Transmitter

    OP07E has very low input offset voltage 75 ┬ÁV max and low input bias current ±4 nA

    Monday, June 08, 2015

    LM311 Square Triangle Oscillator for PWM

    LM311 is a comparator, It operates from single 5V supply or dual supplies,input current 150 nA, 50 V-50 mA output drive capability. TTL-CMOS compatible output.

    Even LM324  used as a  comparator Water Level Indicator with Reed Relays

    The Output is open collector so it can sink current but cannot source, a totem pole output can source and sink. In this Circuit R2 is the source or pull-up.

    LM311 Square Triangle Oscillator for PWM

    The Output being high or low depends on which input is more dominant or positive. If + or non-inverting input is more positive than the - inverting input then output of LM311 is high impedance or high Z as output transistor of LM311 is turned off, but output goes high due to R2 pull-up 1K, so you can apply a load of 10K and above for source. When the - input or inverting input is more positive, output goes Low as transistor turns on, now a current of upto 50mA can sink here, a LED or Relay can be driven.

    Mixed Circuits Analog with Digital

    On turn on C2 capacitor is discharged and pin 3 the inverting input is at a lower potential than pin 2 the non-inverting which is at 2.5V. Hence output goes high and C2 starts charging thru R5, When C2 charges a little beyond 2.5V pin 3 is more dominant and output goes low now, this slowly discharges the C2 bringing the voltage at pin 3 again below 2.5V so output goes high again. This process goes on, hence it oscillates. The charging and discharging is at the rate of R5 * C2 approx. , R3 serves as hysteresis or feedback to ensure clean turn on and off.

    Perpetual Candle - White LED Lamp on Ni-Cd

    This is a easy to build LED lamp circuit for Learning and building skills. This is the first draft schematic V 1.0. It will need improvements for Higher Power Lighting.


    I will give a short summary, The LM317 here configured for around 6.4V DC. The Q3 BC547 limits the current, you can select R3 to suit, make it 1/2W. The Ni-Cd battery pack 1.2 * 4 will not get Over-Current or Over-Voltage due to this circuit.


    Monday, May 18, 2015

    Frequency Divider 74HCT4040

    U1 7555 is a CMOS version of 555. The 555 here is in Astable Oscillator mode, C1 and C4 are decoupling capacitors 0.1uF value, ceramic disc.

    Mixed and Interface Circuits

    The output is around 100kHz, If C3 is plastic or mica the frequency output will be stable with temperature. It is better to use a crystal oscillator.
    Frequency Divider 74HCT4040

    The 555 output is fed to clock input of 4040, the output of 555 will be a square wave, on every high to low transition (falling edge or negative transition) the counter increments by one and the output is 12 bit binary.

    Read more at my Digital Timers, Counters and Clocks

    If input frequency is F the final output at Q12 is F/4096. The period T = 1/F.
    If you make the 555 run at 1Hz, C3 around 7uF, Then this circuit becomes a long duration timer, the Q12 period will be 4096 seconds or 68 minutes.

    Wednesday, May 13, 2015

    Passive volume control with Potentiometer

    Volume control circuit for speaker 4 ohm or 8 ohm located in the another room far away. by using only passive components. This gives limited control and helps reduce volume when a conversation starts. The resistors are very low value.

    Passive volume control

    Passive volume control with Potentiometer

    A simple circuit you can build at home at low cost it uses just a rotary switch and wire wound resistors. Add more resistors and a rotary switch with more contacts for finer control.

    More Hobby Ideas and Projects at Hobby DIY Garage

    Guitar Speaker

    An easy project to start DIY electronics is the Guitar Speaker. Make a good Acoustically friendly Wooden Box. Add a 20 Watt Audio Amplifier and a Large Speaker, There is a Power Supply too in this box. If you hear a Large Hum over the Strumming of the Guitar. You are in Business.

    You should know that this is a limited design, it is used when the speaker is far away from audio amplifier. In the early days  audio amps were made of power transistors and signal transistors. (they came after  valves), No remote controls, Radio tuners, Spool Players and Turntables would be connected to these via a Preamplifier and Rotary Switches.

    The Speakers in large wooden boxes would be kept at the far corners of the Hall, you could have a passive volume control in this with a Neon flickering indication of audio.  That circuit is here Music Sound to light converter.

    Friday, April 10, 2015

    Battery Level Indicator

    This circuit uses a LM339, a quad comparator. LM339 can work on single or dual supplies, it has a open collector output that can drive 15mA, low power consumption. The circuit is an untested design but it should work.

    Mains Voltage and Power Circuits - Similar circuits for Mains Voltage Monitoring.

    There are many better circuits in the various circuit archives i have linked on the front page, you just have to look around. When you measure the open circuit voltage of a battery with a high impedance DMM (10M), the value may be a bit misleading. Apply a dummy load to bleed the battery a bit so that proper readings can be taken on Load. The load below is a 100 ohms wire-wound fusible ceramic resistor which will heat a bit when you test 12V batteries.
    Battery Level Indicator

    Theory of Operation.

    R16 a 5W ceramic wire wound bleeder or dummy load. R15 is a part of an attenuator for obtaining ranges. D2 is a protection clamp diode. R10-D1 forms the 5V reference for comparators. Then an attenuator obtains 1.2, 1.4, 1.6, 1.8 V steps for each comparator. This circuit is similar to Audio Level meter or VU meter circuit.

    The comparator compares the battery sample voltage to the fixed reference step. If '+' pin is more positive than '-', or is '+' is more dominant, then output goes floating 'open collector', so No LED light . But if '-' is more dominant the output transistor of comparator goes low impedance or saturates or turns 'ON'. But only spec current can be switched, do not compare with electrical switch 'ON'. Also on a dual supply 0V is more dominant or positive compared with -12V, even though it appears -12V is a big number. The direction of current is what decides, all measurements are relative.


    Thursday, March 12, 2015

    Analog Buffer and Inverter Switching - DMM Project

    Here the 4053 selects or routes the voltage, current or resistance measurements to the A-D converter or display. It is selected with the mode selection when you want to measure Volts, Amps, Ohms and AC-DC. Some have to be polarity inverted and some signals just buffered this is selected and done by this circuit according to the digital control.


    Now U1 OP07 circuit is a Buffer unity gain and low offset, U2 circuit is unity gain but polarity of output is opposite of input. D1-D2-R3 form a AND gate to select diode-buzzer test mode. The digital selection of 4053 Analog-Switch does not produce any errors in the analog-switching of even mV signals. But it works best at +/- 7.5V dual supply pin-16 is +7.5V, pin- 8 is digital ground and pin 7 alone should go to -7.5.

    Analog Buffer and Inverter Switching

    Analog ground can be same as digital ground, or the switched signals must be within +/-5V of digital ground. The switches should not carry any current and should be buffered at the output by FET opamps 1-Tera-Ohm. Then alone measurements are ok, as the switches have ohmic resistance.

    Monday, March 09, 2015

    Resistance measurement with Current Source - DMM

    U3 LF 356 is used as a constant current source (sink as the current is negative). R4, R5, R7 and R9 set the four resistance ranges by changing the constant current in decade steps. R2 is for calibration of resistance range. The A-B digital control of 4052 selects the range.

    Resistance measurement - DMM Project

    Let voltage current and resistance sockets be separate and of different color or use a high voltage electrical rotary switch or relays if you want the same sockets switched. D1, D2 and R8 are to ensure that the FET can be turned off, as the opamp swings from +/- 3.5V only, with some FET it needs to be tweaked.

    Resistance measurement - DMM Project

    When you keep the current constant, the voltage across a resistor is directly proportional to the Resistor Value. This can be scaled to gat a usable reading on a Digital Voltmeter.