Schematics of delabs

One of the oldest Schematic Archives on the Web. It was in the form of pdf files in the late 90s. Instrumentation and Industrial Designs by delabs and Generic Application Designs.

Search This Blog

Saturday, October 10, 2020

Current Amp digital control - DMM Project

R6 is the Shunt thru which the current to be measured passes. F1 fuse is to protect shunt. D1-D4 ensures that the current flow is not broken if the shunt blows. The Ammeter is always used in series in a circuit.

 Current Shunt Amplifier with digital control - del20014 

OP07 is used here as a digitally controlled amplifier as the voltage offset error is around 75uV. 4052's digital controls A-B set the range by selecting R1, R2, R3, R5 for the digital code at A-B. The inverting amplifier changes the gain and four current ranges are got. The output of this circuit has to go to a buffer and cannot be loaded directly. R8 is offset trim at very high gains, it has to be adjusted for a zero output of opamp for zero current measured.

Current Amp digital control - DMM Project
Rf and Ri are 0.1% MFR, if costly, use bourns 10T trimpot or a difficult way - use series parallel combination and scratch 10% part of resistor network to increase value.

Voltage Attenuator Amp - DMM Project

LF356 opamp FET input is in a inverting amplifier configuration here. R4 + R5 make up Ri each 1/4 W MFR withstands 250V so both will take upto 500V. Use more in series for higher voltage withstand with care in PCB layout and cabinet insulation.

Voltage Attenuator Amp - DMM Project

Rf is selected by a digital value at A-B inputs of 4052, that way R1, R2, R3, R6 are selected for four ranges giving various attenuation levels. The important thing in this circuit is the on resistance of 4052 of 100 ohms comes in series with the output resistance of opamp, so the output is taken before the cmos switch . The output of this digital attenuator should not be loaded and should be buffered before use.

Gain = Av = Rf/Ri and Vout = -(Rf/Ri) * Vin

Voltage Attenuator Amp - DMM Project
Rf and Ri are 0.1% MFR, if costly, use bourns 10T trimpot or a difficult way use series parallel combination and scratch 10% part of a network R to increase value.

Single Polarity Power Supply

This circuit uses a PNP Power Transistor TIP2955, you can use any other according to your current and voltage requirement.

Look at R2 a 10 Ohm resistor, when the current in your load to the power supply is less than 70mA the voltage across R2 is less than 10E * 70mA = 700mV right. The base emitter junction of Q1 will be biased or turned on around 700mV, less than 700mV the transistor just does nothing.

Single Polarity Power Supply

When the current in your load goes over 70mA the voltage across R2 goes above 700mV and a small base current Ib flows from emitter to base of Q1 turning on the transistor. Now a collector current Ic flows from emitter to collector and then to your load supplying the excess demand. The Ic = Ib * hfe where hfe or beta is the DC gain value.

From my Power Electronic Circuits

Some transistors will have only AC gain specified which is lower than DC gain. TIP2955 has a gain of 20 so for an Ib of 50mA the Ic will be 1 Amp which saves the regulator from heating up or shutting down as the main current flows thru the transistor. Q1 should be provided with a good heatsink.

Wednesday, September 16, 2020

DMM range and AC-DC mode Logic

This is the third circuit that you will need to build a Simple Benchtop DMM with no Microcontroller.

Here the U1D and U1B 4093 acts like a de-bouncing circuit for the push keys. The 4029 counts up scrolling to binary values 00, 01, 10, 11 for the four ranges.

The binary value of 4029 is decoded to decimal by 4028 in order to light four LEDs which indicates the range or mode on the front panel. When any of these pushbuttons are pressed and held, the nand schmitt 4093 clocks to scroll the range continuously. The binary output of these counters control CMOS switches 4052 which are analog multiplexers.

DMM range and AC-DC mode Logic

The DPM or DVM gives a readout of an Analog Value or process. The Analog reading we obtain from a Circuit Measurement Jig represents some real world parameter.

In a multi-parameter instrument like DMM, the measurement jig functions and the analog signal routing is done by ganged range selection switches.

Read More here DMM range and AC-DC mode Logic

Isolated dual power supply from 5V

This is a unregulated supply for low power circuits. You may be able to regulate the outputs with zeners or small regulators like 78L05.

The transformer can be hand wound in a mini ferrite pot core. you can use 2N2222 or any other fast transistor. The transformer should have 1KV isolation. The dot polarity of TR1 should be properly observed, else it may fail to oscillate or give output.


Isolated dual power supply from 5V


Diode should be fast recovery type, for less than 100mA use 1N4148. transformer, pri-20-20, sec-60-60, a SWG-AWG to suit the current you

Circuits using only  discrete devices

design for, any fast switching transistor would work, no regulation, use regulators like 78L12 if you want, circuit like multivibrator used for flashing LED lights.

Thursday, September 10, 2020

Crystal Oscillator - Parallel Resonant

74HCU04 is a chip that was made for this purpose, HCT may not work for such a circuit. C1 and C2 can go to upto 33pF and R2 can be increased to make R2 * C2 = t.

Crystal Oscillator - Parallel Resonant

Time constant much less than the period T of the crystal T = 1/F . This is to remove higher frequency components in the Oscillator.

More on Piezoelectric Crystal Oscillator

The circuit above is a parallel resonant oscillator circuit. The Crystal works by the piezoelectric principle, piezo means pressure. The electric field causes the impedance of the crystal to change. The LP Record Player needle is the reverse of this, the bumps on the spiral groove of the record applies pressure to needle which generates electricity. Both are piezo-electric effects.

Saturday, August 15, 2020

Power supply with battery backup - DMM

This is a simple charger circuit which will work for a light load like a DMM, the Battery can be a sealed maintenance free battery of 9V-2AH or better. The circuit will work best if the Unit is powered on many times daily on regular use, else battery will drain down.

The 555 Astable is used to generate a AC signal from which a negative voltage is generated, A 79L05 which is a low power TO92 equivalent of 7905 a negative -5 volts regulator is used as -5 volts load is less. A TO220 7805 is used for the +5V supply.

Power supply with battery backup - DMM

Many dual supplies are derived from one DC Source. A SMPS solution is the best. A Series Regulator is simple to troubleshoot in comparison to Switching Types, there is no EMI-RFI too.

Power supply with battery backup - DMM

This simple circuit is ok only for Low Current gadgets, Whereas SMPS is green and efficient. In SMPS a greater care for Product Safety is required. In a Linear Supply with Step-Down Mains-Frequency Transformer. The Transformer is the only place, where you look into safety the most. In SMPS it is the PCB, the feedback components and also The High-Frequency (200 kHz) Mains Ferrite Transformer.

Friday, August 14, 2020

Build a DMM - LM3914 Analog display

This a part of a complete Benchtop DMM that you can build to learn the internals of a Digital MultiMeter. This is oriented towards learning the measurement aspects and the protection of input circuits.

U2A opamp LF353 is used here as a constant current source, R10-D13-D14 is for protection in case you measure voltage in the ohms range. U1 4052 helps digitally select four different currents, the currents pass thru the unknown resistor to be measured and an voltage developed across the resistor is measured.

Build a DMM - LM3914 Analog display

U2B is a buffer which passes on the voltage measured to U5A for inversion of polarity as current source is a negative current (current sink). U5B amplifies to the level required for the LM3914 display circuit. U7 555 is used as a de-bouncing for switch SW1 so as to advance counter 4029 to change the range of resistance measurement.

Build a DMM - LM3914 Analog display

Use any FET input dual opamp, TLO72 will work but LM358 will cause error as it is transistor input..

D1, D12 and R8 are to ensure that the FET can be turned off, as the opamp swings from +/-3.5V only, with some FET it needs to be tweaked. LF353 is a Wide Bandwidth Dual JFET Input Operational Amplifier.