Friday, July 27, 2018

Voltmeter Attenuator Rectifier

Measurement of Voltage : - In testing electronic circuits, Measurement of voltages is important for diagnosing faults and making the circuits work. In circuit diagrams given in equipment manuals, voltages at various points in the circuit are usually marked. A deviation from these values indicates that some component has failed and eventually leads to clues for isolating the faulty areas.

Voltage  measurement attenuator amp

Voltmeter Attenuator Rectifier

Specifications :-

D.C. Voltage
Ranges : +/- 200 mV, 2V, 20V, 200V, 2000V.
Input impedance: 10 mega ohms.
Circuit protection: + 2000V D.C. all ranges.
Over range: 100% to 1999.
Accuracy: +/- 0.5%.
A.C. Voltage
Note: Average responding Ranges calibrated for sine wave.
Ranges: 200 mV, 2V, 200V, 2000V
Input impedance 10 mega ohms.
Circuit protection : 750V r.m.s., all ranges.
Over range: 100% to 1999.
Description :-
As our DPM is capable of measuring only 200 mv full scale deflection, the input voltage in the case of exceeding the range needs scaling down. This is achieved by an attenuator chain.

Wednesday, July 18, 2018

Ammeter and Precision Rectifier

Studying current measurement is a prerequisite for many of the measuring techniques. The current parameter mainly specifies the power consumption in a circuit, given the value of resistance.

Current Shunt Amplifier digital control

It is found convenient to measure current rather than voltage for knowing power output and determining efficiency. It may be required to measure leakages in circuits at certain times. Hence the measurement of current constitutes a priority.

Ammeter and Precision Rectifier
Measurement of DC Current -

The circuit diagram for the measurement of current (d.c. and a.c. modes) is shown aside. For measurement of current switch SI is operated. The switch S-ad is kept in d.c. mode. This enables the current to pass through a shunt circuit consisting of resistors R26, R27, R28, R29 and R 30. The current ranges are provided in 5 decades i.e. 200 micro-amps, 2 milli-amps, 20 milli-amps, 200 milli-amps and 2 amps. An additional current range that can be read upto 20 Amps is also provided. However, for measuring this high current the green terminal provided on the meter should be used. When a current to be measured is fed to the input terminals of the instrument appropriately, a voltage proportional to the current through the shunt resistor is fed into the DPM which measures the d.c. voltage which in turn indicates the d.c. current being fed.

Test and Measurement Instruments

Measurement of AC Current -

In case of a.c. measurement, the switch S-ad is kept in a.c. mode. The a.c. current path is similar to the d.c. current path in the shunt resistor. However the voltage tapped across the shunt resistor is fed into IC2 which is a buffer. The output of IC2 is fed to IC3 through capacitors C10 and C11. This IC is an operational amplifier acting as a precision rectifier. The output of IC3 is fed to the input of the DPM for measuring the a.c. current being fed to the input terminals. It can be seen that the current measurement is similar to the voltage measurement except that the attenuator chain is replaced by the shunt resistor circuit.

(This is scanned-ocr from my earlier file, some mistakes corrected - delabs)

Friday, July 13, 2018

Multi Output Instrument Power Supply

Every electronic gadget primarily needs a D.C, power supply to energize it. It also forms the basic requirement for any constructional project. consequently there is a need to obtain multiple voltage values for cost reduction, convenience and compact arrangement for all the above applications

List Of Components For Power Supply.

1. Transformers - X1-6-0-6 (500 ma), X2-12-0-12 (500ma)
2. Semiconductors - IC6-7805, IC7-7808, IC8-7908, D1 to D10-IN4007, D11 and D12 - 12v, 1W, Zener
3. Resistors. - R1 and R2 - 100E 1/2 W CFR
4. Capacitors. - C 40v , C5 and C8 - 1000 Mfd , C1 - 2200 Mfd, C5 and C7 - 0.1 Mfd, C9 to C12 - 100Mfd
5. Miscellaneous -  F1-250ma, N1-Neon, 3-Pin Mains Chord.

Multi Output Instrument Power Supply

POWER SUPPLIES:

The required D.C. power supply is usually obtained by means of a transformer. It is also possible to have transformer­less power supplies. Though the elimination of the transformer makes the circuit compact, economical and simple, also facilitating quick assembly and built in short circuit protection, certain drawbacks creep in. These power supplies are useful only for low current applications.

Special safety precautions ? are to be followed while using them. Physical contact should be strictly avoided, since the output terminals are not isolated from A.C. mains supply.

Workbench Power Supply

This obviously necessitates the use of a transformer. By suitable modification it is possible to obtain multiple/ fractional dual voltages from a transformer. Different not-so obvious voltage values can also be obtained from the transformer by rectification circuits. The output so obtained from a transformer secondary is unregulated. For good load regulation, the internal impedance of any power supply should be as low as possible. The regulation can be improved either by resistor zener method or series regulator method.

Tuesday, June 26, 2018

Constant Current Source LED Drive

This is a Constant Current Source LED Driver, When the LED driver Upper-NPN is driven by a voltage thru 4.7K the LED lights up. Assume that the Lower-NPN at bottom is absent. The current via LED and NPN is limited by R. 20mA may be ok 15mA even better. Or LED blows even transistor goes.

LED Voltage Level Indicator

BC547 is like 100mA-40V-200b, Limit collector current to 60mA, use it at less than 25V and depending on the individual transistor you may get a DC current amplification of 200 times. That is 1uA of base-emitter current could give a whooping 200uA of collector-emitter current.

Constant Current Source LED Drive

Still Thinking we do not have the Lower-NPN we calculate the resistor. Vcc - ( 2 LEDs * 1.7) - Vce = Vr that is the voltage across the resistor. You know ohms law and the current needs to be 15mA for a bright and long lasting LED. Lastly 1.7 the forward drop of a green LED and 0.6 a saturated or Turrned-On NPN Vce.

Mains Voltage Current LED Indicators

Now you use the Lower-NPN, The above calculations do not hold anymore. Let us think a small current is flowing in the LED. Then the voltage across R is less than 0.7V, that means base-emitter diode of the Lower-NPN will not get to conduct. The Collector does not draw any current away. Now think that more current flows in LED, the voltage across R builds up above 0.7V the Lower-NPN is biased. The collector of Lower-NPN starts drinking current from the base of the Upper-NPN. So The Upper-NPN starts losing its bias. This lowers the LED current and contains, regulates or controls the LED current as shown in the formula.

Saturday, June 23, 2018

High Resistance LED Meter

I don't remember if this circuit worked properly. But a few were made and i might not have shown the modifications that were done to make it work. This was meant to be a portable, low cost, insulation tester for an electrician. If you try it out and debug it it may work well.

High Resistance Insulation Materials

A negative voltage is derived by shifting gnd with two diodes, i feel this did not work very well. Two pins of CD4028 pins are also used to boost the reference to get two extra ranges as 4051 has a 100E on resistance.

High Resistance Meter

The 555 clock makes 4029 counter count. But the clock can be clamped to gnd by a TL062 window comparator. The clock is frozen when the input value to comparator pin 5-2 is within a lower limit and upper limit "window" pin 3-6.

Insulation Tester

The 4029 counter BCD is decoded to decimal by 4028 which drives the LEDs, keep LED drive within 3mA or chip will be loaded. Use high efficiency extra-bright LEDs.

The 4029 BCD also controls a shunt resistor array with CMOS switches 4051. The voltage across shunt is a sample of leakage current. This is compared in the window comparator to freeze the Clock and LED display to give a reading of the leakage current or Insulation Resistance.

Circuits by Application

Analog Circuits

  1. Battery Level Indicator
  2. Simple Sample and Hold
  3. Sample and Hold Standby
  4. Voltmeter Attenuator
  5. Precision Current Source
  6. Opamp Supply Virtual Ground

SCR and Triac

  1. Solid State Relay
  2. Normally Closed AC SSR
  3. AC-AC-SSR
  4. DC-DC SSR
  5. 2N2646 based Pulser
  6. Drive SCR thyristor

Mains Power

  1. Flashing Neon Lamp
  2. Dimmer power control
  3. Edison Bulb Life Extend
  4. Mains Current LED
  5. Mains Voltage LED

Digital Circuits

  1. Simple Digital Counter
  2. Running Lights
  3. Frequency Divider
  4. Crystal Oscillator
  5. Simple High speed switch
  6. Differential TTL converter

Measureall DMM

  1. Ohmmeter Measure Resistance
  2. Precision Digital Attenuator
  3. Precision Amplifier

Mixed Circuits

  1. Monostable Multivibrator
  2. Digital to Analog
  3. LM311 Oscillator
  4. PLL using 4046
  5. VCO with LM331
  6. BCD Thumbwheel to Analog
  7. V to F Converter ICL8038
555 Circuits
  1. OR gate with two 555
  2. fixed frequency duty cycle
  3. Pulse width modulation
  4. Astable Multivibrator
  5. uC Reset Generator
  6. LM555 Voltage Doubler
  7. 555 Power Oscillator
Discrete Circuits
  1. Isolated dual supply
  2. Sound to light converter
  3. Water operated relay
  4. Telephone Indicator
  5. Passive volume control
  6. RS232 Opto-Isolation
  7. Voltage Level Indicator
  8. Relay Driver
  9. Constant Current LED
  10. Voltage Doubler
  11. FET Current Source
Opamp Circuits
  1. Three Opamp Differential
  2. Two Opamp Differential
  3. Buffer Opamps
  4. Differential Op-Amp
  5. Inverting Opamp
  6. Non Inverting Opamp
  7. Digital gain control
  8. Square Triangle Oscillator
  9. Dual Polarity Output Amps
  10. Ammeter Precision Rectifier
  11. Voltage / Current 4-20 mA
  12. Current Source for RTD
Power Electronics
  1. Dual Power Supply
  2. Single Power Supply
  3. Battery Backup Supply
  4. 5V 1A Supply LM2575
  5. 5V Power Supply L296
  6. Dual Power Supply
  7. Tubelight Electronic Choke
  8. Voltage Doublers Multipliers
  9. White LED Lamp on Ni-Cd

uC and uP

  1. PC RS232 with MAX232A
  2. Battery Backup SRAM
  3. watchdog uC uP systems
Instrumentation Circuits
  1. Mains monitor LM3914
  2. Simple Mains monitor
  3. single digit voltmeter
  4. High Resistance Meter
  5. Diode Thermometer
  6. Function Generator
  7. Diode Leakage Tester
  8. Analog LED Ohm Meter
  9. Millivolt Source Current Loop
Process Control
  1. AD590 - temperature
  2. Thermocouple Amplifier
  3. Linearizing Thermocouple
  4. Thermocouple Amplifier
  5. 0-1V to 4-20 mA
  6. 1-5V to 4-20 mA
  7. InfraRed - Optical Switch
  8. InfraRed Detector

Search This Blog