Showing posts with label Battery-Circuits. Show all posts
Showing posts with label Battery-Circuits. Show all posts

Saturday, April 11, 2015

Battery Level Indicator

This circuit uses a LM339, a quad comparator. LM339 can work on single or dual supplies, it has a open collector output that can drive 15mA, low power consumption. The circuit is an untested design but it should work. I did it as many searches were made in my webpages with these keywords.

Mains Voltage and Power Circuits - Similar circuits for Mains Voltage Monitoring.

There are many better circuits in the various circuit archives i have linked on the front page, you just have to look around. When you measure the open circuit voltage of a battery with a high impedance DMM (10M), the value may be a bit misleading. Apply a dummy load to bleed the battery a bit so that proper readings can be taken on Load. The load below is a 100 ohms wire-wound fusible ceramic resistor which will heat a bit when you test 12V batteries.
Battery Level Indicator

Theory of Operation.

R16 a 5W ceramic wire wound bleeder or dummy load. R15 is a part of an attenuator for obtaining ranges. D2 is a protection clamp diode. R10-D1 forms the 5V reference for comparators. Then an attenuator obtains 1.2, 1.4, 1.6, 1.8 V steps for each comparator. This circuit is similar to Audio Level meter or VU meter circuit.

Comparators in Interface Circuits

The comparator compares the battery sample voltage to the fixed reference step. If '+' pin is more positive than '-', or is '+' is more dominant, then output goes floating 'open collector', so No LED light . But if '-' is more dominant the output transistor of comparator goes low impedance or saturates or turns 'ON'. But only spec current can be switched, do not compare with electrical switch 'ON'. Also on a dual supply 0V is more dominant or positive compared with -12V, even though it appears -12V is a big number. The direction of current is what decides, all measurements are relative.

Thursday, December 18, 2014

Battery Backup Supply

This is a 9V power supply which will work even on power failure. It uses a rechargeable battery and regulators. A transformer with 15-0-15 AC volts output is required.

From my Power Electronic Circuits

Battery Backup Supply

In the first regulator U1 the output is lifted up by 1.4V and in the second regulator U2 by a resistor divider. In the second regulator the voltage across resistor R3 is 5V, so the current is 5V / 1K = 5mA this adds to the quiescent current of 5mA from the regulators ground terminal and flows into the resistors R1 and R2 in parallel which form 404 ohms, 10mA thru 404 ohms is 4V. So the output will be 5 + 4 = 9V. Note that the charge and discharge paths of the battery are separated with diodes.

Wednesday, August 13, 2014

Switching Battery Charger with L296

This is a a circuit from my  Power Supplies Section.  There may be some documentation errors in my circuits. If you are used to building and troubleshooting circuits then it is ok.

This circuit is derived from an application note of L296, It is a Power Switching Regulator from ST Micro. U1A is wired as a differential amplifier and U1B a High Gain Comparator. C4 and C5 are parallel for lower ESR. Equivalent series resistanc Fast switching diode used is BYW80.

Switching Battery Charger with L296

L296 is a switch mode power controller here. In this NTE327 or 2N5038 is used to boost the current output. This transistor is both high current and fast switching. U1A, LM358 measures the load current by reading the voltage across shunt R6 and compared to a current limit setting at R14 using U1B to give a load current control. R7-R8 give a voltage feedback for voltage limit.

Use MFR 1% for all Resistors, 33E means 33 ohms, 22K means 22 kilo ohms, 1M is 1 megohm. 10T tp means ten turn trimpot. "Analog Ground" and "Digital Ground" must be linked at power supply only, avoid loops, let grounds radiate from a ground plane. Unused inputs of logic and opamps pull up or down to avoid oscillations and noise

Circuits by Application

Analog Circuits

  1. Battery Level Indicator
  2. Simple Sample and Hold
  3. Sample and Hold Standby
  4. Voltmeter Attenuator
  5. Precision Current Source
  6. Opamp Supply Virtual Ground

SCR and Triac

  1. Solid State Relay
  2. Normally Closed AC SSR
  3. AC-AC-SSR
  4. DC-DC SSR
  5. 2N2646 based Pulser
  6. Drive SCR thyristor

Mains Power

  1. Flashing Neon Lamp
  2. Dimmer power control
  3. Edison Bulb Life Extend
  4. Mains Current LED
  5. Mains Voltage LED

Digital Circuits

  1. Simple Digital Counter
  2. Running Lights
  3. Frequency Divider
  4. Crystal Oscillator
  5. Simple High speed switch
  6. Differential TTL converter

Measureall DMM

  1. Ohmmeter Measure Resistance
  2. Precision Digital Attenuator
  3. Precision Amplifier

Mixed Circuits

  1. Monostable Multivibrator
  2. Digital to Analog
  3. LM311 Oscillator
  4. PLL using 4046
  5. VCO with LM331
  6. BCD Thumbwheel to Analog
  7. V to F Converter ICL8038
555 Circuits
  1. OR gate with two 555
  2. fixed frequency duty cycle
  3. Pulse width modulation
  4. Astable Multivibrator
  5. uC Reset Generator
  6. LM555 Voltage Doubler
  7. 555 Power Oscillator
Discrete Circuits
  1. Isolated dual supply
  2. Sound to light converter
  3. Water operated relay
  4. Telephone Indicator
  5. Passive volume control
  6. RS232 Opto-Isolation
  7. Voltage Level Indicator
  8. Relay Driver
  9. Constant Current LED
  10. Voltage Doubler
  11. FET Current Source
Opamp Circuits
  1. Three Opamp Differential
  2. Two Opamp Differential
  3. Buffer Opamps
  4. Differential Op-Amp
  5. Inverting Opamp
  6. Non Inverting Opamp
  7. Digital gain control
  8. Square Triangle Oscillator
  9. Dual Polarity Output Amps
  10. Ammeter Precision Rectifier
  11. Voltage / Current 4-20 mA
  12. Current Source for RTD
Power Electronics
  1. Dual Power Supply
  2. Single Power Supply
  3. Battery Backup Supply
  4. 5V 1A Supply LM2575
  5. 5V Power Supply L296
  6. Dual Power Supply
  7. Tubelight Electronic Choke
  8. Voltage Doublers Multipliers
  9. White LED Lamp on Ni-Cd

uC and uP

  1. PC RS232 with MAX232A
  2. Battery Backup SRAM
  3. watchdog uC uP systems
Instrumentation Circuits
  1. Mains monitor LM3914
  2. Simple Mains monitor
  3. single digit voltmeter
  4. High Resistance Meter
  5. Diode Thermometer
  6. Function Generator
  7. Diode Leakage Tester
  8. Analog LED Ohm Meter
  9. Millivolt Source Current Loop
Process Control
  1. AD590 - temperature
  2. Thermocouple Amplifier
  3. Linearizing Thermocouple
  4. Thermocouple Amplifier
  5. 0-1V to 4-20 mA
  6. 1-5V to 4-20 mA
  7. InfraRed - Optical Switch
  8. InfraRed Detector