Saturday, November 19, 2016

Current Source for Resistance Measurement

Here is a current source you can build for resistance measurement. When the current is held constant, you know as per Ohm's Law the Voltage across Resistor is proportional to Resistance value.

Resistance measurement with Current Source

Precision Current Source for Resistance Measurement

The supply is +12 and -12, The total voltage across R6 + R7 is 24V. Then 24V / 120K = 0.2mA. The voltage across R6 is (10K * 0.2mA) = 2V. The same is reflected across R5 in this feedback configuration. That means Q3 is a 2V / 1K = 2mA source. If my calculations are right.

Design of a Constant Current Source

There are sources of errors in this circuit. The temperature variation of all resistor values, which is 100ppm for general calculations in 1% MFR. Let us assume you use OP07 which is close to an ideal opamp, but for this application it is not needed. The second error is Ib, the base current of Q3 which may be 0.2mA / Hfe(200) = ~ 1 uA. Then the variation of Hfe, Vcc and Vdd w.r.t. Temperature, should not be overlooked. Use LM7812 and LM7912.

So you see, design knowing that all these components are not ideal. Leakage currents, Humidity, EMI, Stray Capacitance and Inductance and much more. It is just like, even when the motor is fixed firmly on the machine, some parts Vibrate and create a Noise due to Mechanical Resonance. So Build and evaluate your design in the real environment, to learn.

Discover how resistors are color coded - Interactive Java Resistors Tutorial.

Friday, November 18, 2016

LM317 based Regulated Power Supply

This is a Regulated Power Supply based on the LM317 IC. It will need a Boost Power Transistor and heatsink for higher currents. It is a versatile building block for stable instrumentation supplies. Consumer Electronic gadgets can use a SMPS chip. In case you wish to use a SMPS for a Precision Instrumentation Block, then take extreme care on Shielding and EMI-RFI.

LM317 based Regulated Power Supply

This is a General Purpose Chip, Series Regulation. It can be varied or trimmed. There is an Internal temperature compensated reference. The minimum trim value is around 1.2. In case you want a Low value voltage like 0.5 with a good current, then use a good negative supply to offset the 1.2 V.

Power supply with battery backup for DMM

The transformer can be s Split Bobbin with Pri-Sec copper shield foil.  This can be earthed along with the metal enclosure. C4 sends any hi-freq components to earth.  It is better if you do not earth the ground but use such capacitors. A Supply should simulate a a battery with both ends floating wrt Earth. A option to eartth the ground is fine. This also helps the user to configure his own dual supplies.

Q1 and R5 form a Short Circuit OR current fold back OR constant current mechanism. TP1 can be used to vary the output voltage.  Better use something like a Bourns 10T trimpot. An open preset may introduce a noise due to dust and vibration. I don’t remember why i added a zener DZ1, a diode may suffice.

See more at my Power Supplies Section.

Wednesday, November 16, 2016

Millivolt Meter using a LM3914 LED Dot Display

Here is a easy to read 'Analog' Millivoltmeter. Just like the Moving Coil Voltmeter, but does not have that resolution. This gives a easy indication of process progress or parameter magnitude from a large distance. A bargraph is easy on decision making too, compared to a digital readout.

How this Works ? - The analog input in mV - millivolts is fed to R18, RC reduces Noise and the Zener Clamps protect. The LF353 FET Opamp offers High Impedance as a Non-Inverting Amplifier, which nullifies measurement burden, Remember the Moving coil voltmeter loads the measured circuit, causing sizable errors. Then they invented the Vacuum Tube Voltmeter to solve this issue. An FET voltmeter is near ideal, they ought to have inventing this first.

The Zeners and C3 Plastic cap should not leak, even if they do it should be in Pico Amps. Get quality stuff and do a neat job putting them together. To master this leakage and other aspects, try building an Electrometer with CA3140. Another Measurement challenge is uV Microvolt measurements, you will be faced with new glitches in connectors and PCB due to thermocouple effects and contact resistance.

A soldered joint near a hot resistor will set up enough thermal gradients and create many thermocouples all over the board. Try to measure 1 Microohm with a 10 Amp pulse or 1 A DC. You will learn many things. Connectors have a craze for the Precious Metal, they act funny if they do not have enough Gold on em.

Once i observed, very low voltages or circuits with nominal voltages but very low currents, cannot break a near invisible layer between the plates of a good connector. A sub-micron coat of corrosion, dust or even some organic deposit, was forming a dielectric layer which was impervious to uV and pA. A good cleaning with a volatile organic solvent solved the problem but messed up other plastics nearby.

Millivolt Meter using a LM3914 LED Dot Display

Millivolt Meter using a LM3914 LED Dot Display. - This circuit is a part of my Build a DMM or Digital Multi Meter

Circuits by Application

Analog Circuits

  1. Battery Level Indicator
  2. Simple Sample and Hold
  3. Sample and Hold Standby
  4. Voltmeter Attenuator
  5. Precision Current Source
  6. Opamp Supply Virtual Ground

SCR and Triac

  1. Solid State Relay
  2. Normally Closed AC SSR
  3. AC-AC-SSR
  4. DC-DC SSR
  5. 2N2646 based Pulser
  6. Drive SCR thyristor

Mains Power

  1. Flashing Neon Lamp
  2. Dimmer power control
  3. Edison Bulb Life Extend
  4. Mains Current LED
  5. Mains Voltage LED

Digital Circuits

  1. Simple Digital Counter
  2. Running Lights
  3. Frequency Divider
  4. Crystal Oscillator
  5. Simple High speed switch
  6. Differential TTL converter

Measureall DMM

  1. Ohmmeter Measure Resistance
  2. Precision Digital Attenuator
  3. Precision Amplifier

Mixed Circuits

  1. Monostable Multivibrator
  2. Digital to Analog
  3. LM311 Oscillator
  4. PLL using 4046
  5. VCO with LM331
  6. BCD Thumbwheel to Analog
  7. V to F Converter ICL8038
555 Circuits
  1. OR gate with two 555
  2. fixed frequency duty cycle
  3. Pulse width modulation
  4. Astable Multivibrator
  5. uC Reset Generator
  6. LM555 Voltage Doubler
  7. 555 Power Oscillator
Discrete Circuits
  1. Isolated dual supply
  2. Sound to light converter
  3. Water operated relay
  4. Telephone Indicator
  5. Passive volume control
  6. RS232 Opto-Isolation
  7. Voltage Level Indicator
  8. Relay Driver
  9. Constant Current LED
  10. Voltage Doubler
  11. FET Current Source
Opamp Circuits
  1. Three Opamp Differential
  2. Two Opamp Differential
  3. Buffer Opamps
  4. Differential Op-Amp
  5. Inverting Opamp
  6. Non Inverting Opamp
  7. Digital gain control
  8. Square Triangle Oscillator
  9. Dual Polarity Output Amps
  10. Ammeter Precision Rectifier
  11. Voltage / Current 4-20 mA
  12. Current Source for RTD
Power Electronics
  1. Dual Power Supply
  2. Single Power Supply
  3. Battery Backup Supply
  4. 5V 1A Supply LM2575
  5. 5V Power Supply L296
  6. Dual Power Supply
  7. Tubelight Electronic Choke
  8. Voltage Doublers Multipliers
  9. White LED Lamp on Ni-Cd

uC and uP

  1. PC RS232 with MAX232A
  2. Battery Backup SRAM
  3. watchdog uC uP systems
Instrumentation Circuits
  1. Mains monitor LM3914
  2. Simple Mains monitor
  3. single digit voltmeter
  4. High Resistance Meter
  5. Diode Thermometer
  6. Function Generator
  7. Diode Leakage Tester
  8. Analog LED Ohm Meter
  9. Millivolt Source Current Loop
Process Control
  1. AD590 - temperature
  2. Thermocouple Amplifier
  3. Linearizing Thermocouple
  4. Thermocouple Amplifier
  5. 0-1V to 4-20 mA
  6. 1-5V to 4-20 mA
  7. InfraRed - Optical Switch
  8. InfraRed Detector