Thursday, March 13, 2014

Two Op-Amp Differential Amplifier

The Input Impedance of this module is very high and is symmetric. This circuit can be used for strain gauges and for four wire measurements. If inputs are in mV use OP07. The merit is that it uses only 2 OpAmps yet has high differential Input Impedance.

Dual Differential Amp - Interactive Simulation

The Outputs of Opamps are low impedance but still have limits they cannot drive more than a few mA of Current into the Load. If low ohmic value loads are to be applied use external transistors as amplifiers. If inputs Vn-Vp are floating Outputs may be random or Oscillating, it is good to have a bias network of 10M resistors to a potential even zero or COM this enables Vout when input floats.

Two Op-Amp Differential Amplifier

Vout = (Vp - Vn) * (Rf+Ri)/Ri

Related Reading

Precision Instrumentation Amplifiers 

Wednesday, March 12, 2014

Non-Inverting Amplifier - Op-Amp Circuits

The input impedance of this module is very high, if U1 is OP07 it is in mega ohms, use CA3140 or LF356 fet input opamps to get 1 tera ohm input impedance, but for high gains OP07 is better as it is ultra low offset, this is a good amplifier for sensor outputs, as in a DC Circuit.

Non-Inverting Opamp Interactive Simulation

The zener diodes protect the opamp inputs, R1 limits current during high voltage inputs and R1 and C1 form a filter to remove ac components C1 should be a plastic type as ceramic and electrolytic caps are leaky. A large C1 will slow the response time, the sum of Ri + Rf should be greater than 5k so that output is not loaded. also do not connect output to voltages more than vcc/vdd it will blow Opamp.

Non-Inverting Amplifier - Op-Amp Circuits

Vout = Vin * (Rf + Ri) / Ri

Related Reading

Noninverting Amplifier - Circuit Design Tutor 

Monday, March 10, 2014

Inverting Amplifier - Op-Amp Circuits

Input Impedance of this module is Ri as pin 2 is at virtual ground, the opamp with feedback tries to maintain pin 2 and 3 at same potential pin 3 is at 0V hence pin 2 is at virtual ground. Clamping diodes protect OpAmp, Rf + Ri is between 5kE and 1ME as an opamp may be able to drive around say 5mA max.

Inverting Opamp - Interactive Simulation

Current into node pin 2 = Vin/Ri if Vin is +ve it raises potential at pin 2, in order to bring it to 0V the OpAmp sucks away the current by turning its output negative the current leaving pin 2 node is also Vin/Ri. Then Vout is given by Vin/Ri * Rf as per V=IR ohms law. Most OpAmps output swings around 1v less than VCC/VDD for full swing use CA3130 this is a FET input OpAmp, and has low bias currents in pico amps.
Inverting Amplifier - Op-Amp Circuits

Vout = Vin * (-1) * (Rf/Ri)

Related Reading

Circuits by Application

Analog Circuits

  1. Battery Level Indicator
  2. Simple Sample and Hold
  3. Sample and Hold Standby
  4. Voltmeter Attenuator
  5. Precision Current Source
  6. Opamp Supply Virtual Ground

SCR and Triac

  1. Solid State Relay
  2. Normally Closed AC SSR
  3. AC-AC-SSR
  4. DC-DC SSR
  5. 2N2646 based Pulser
  6. Drive SCR thyristor

Mains Power

  1. Flashing Neon Lamp
  2. Dimmer power control
  3. Edison Bulb Life Extend
  4. Mains Current LED
  5. Mains Voltage LED

Digital Circuits

  1. Simple Digital Counter
  2. Running Lights
  3. Frequency Divider
  4. Crystal Oscillator
  5. Simple High speed switch
  6. Differential TTL converter

Measureall DMM

  1. Ohmmeter Measure Resistance
  2. Precision Digital Attenuator
  3. Precision Amplifier

Mixed Circuits

  1. Monostable Multivibrator
  2. Digital to Analog
  3. LM311 Oscillator
  4. PLL using 4046
  5. VCO with LM331
  6. BCD Thumbwheel to Analog
  7. V to F Converter ICL8038
555 Circuits
  1. OR gate with two 555
  2. fixed frequency duty cycle
  3. Pulse width modulation
  4. Astable Multivibrator
  5. uC Reset Generator
  6. LM555 Voltage Doubler
  7. 555 Power Oscillator
Discrete Circuits
  1. Isolated dual supply
  2. Sound to light converter
  3. Water operated relay
  4. Telephone Indicator
  5. Passive volume control
  6. RS232 Opto-Isolation
  7. Voltage Level Indicator
  8. Relay Driver
  9. Constant Current LED
  10. Voltage Doubler
  11. FET Current Source
Opamp Circuits
  1. Three Opamp Differential
  2. Two Opamp Differential
  3. Buffer Opamps
  4. Differential Op-Amp
  5. Inverting Opamp
  6. Non Inverting Opamp
  7. Digital gain control
  8. Square Triangle Oscillator
  9. Dual Polarity Output Amps
  10. Ammeter Precision Rectifier
  11. Voltage / Current 4-20 mA
  12. Current Source for RTD
Power Electronics
  1. Dual Power Supply
  2. Single Power Supply
  3. Battery Backup Supply
  4. 5V 1A Supply LM2575
  5. 5V Power Supply L296
  6. Dual Power Supply
  7. Tubelight Electronic Choke
  8. Voltage Doublers Multipliers
  9. White LED Lamp on Ni-Cd

uC and uP

  1. PC RS232 with MAX232A
  2. Battery Backup SRAM
  3. watchdog uC uP systems
Instrumentation Circuits
  1. Mains monitor LM3914
  2. Simple Mains monitor
  3. single digit voltmeter
  4. High Resistance Meter
  5. Diode Thermometer
  6. Function Generator
  7. Diode Leakage Tester
  8. Analog LED Ohm Meter
  9. Millivolt Source Current Loop
Process Control
  1. AD590 - temperature
  2. Thermocouple Amplifier
  3. Linearizing Thermocouple
  4. Thermocouple Amplifier
  5. 0-1V to 4-20 mA
  6. 1-5V to 4-20 mA
  7. InfraRed - Optical Switch
  8. InfraRed Detector