Thursday, December 18, 2014

Battery Backup Supply

This is a 9V power supply which will work even on power failure. It uses a rechargeable battery and regulators. A transformer with 15-0-15 AC volts output is required.

From my Power Electronic Circuits

Battery Backup Supply

In the first regulator U1 the output is lifted up by 1.4V and in the second regulator U2 by a resistor divider. In the second regulator the voltage across resistor R3 is 5V, so the current is 5V / 1K = 5mA this adds to the quiescent current of 5mA from the regulators ground terminal and flows into the resistors R1 and R2 in parallel which form 404 ohms, 10mA thru 404 ohms is 4V. So the output will be 5 + 4 = 9V. Note that the charge and discharge paths of the battery are separated with diodes.

Wednesday, December 17, 2014

AC conversion and Continuity - DMM

U1A LF353 opamp turns on a buzzer when the voltage at Test + falls very low indicating a short between Test + and Test - or a resistor less than 5 ohms. The R9-R14 divider determines the minimum voltage that can be at Test + for buzzer to just turn on.

The Opamp here is a comparator and R10 10 Meg gives a very small hysteresis so that there is no oscillation at threshold levels, that is when both inputs at same levels.The Zener is for protection and R6 to limit current.


U2A and U1B opamps form a precision rectifier, note that this is not a true RMS rectifier circuit for that see some devices from Analog Devices. When you need to rectify a 200mV AC signal you cannot use a diode like 1N4148 as the diode turns on at 700mV so this circuit is used.

AC conversion and continuity buzzer test

The AC signal measurement is best to do with a True RMS convertor. This Type is able to quantify the Heating power of a AC voltage, includes all harmonics and Noise too.

Wednesday, December 03, 2014

Isolated dual power supply from 5V

This is a unregulated supply for low power circuits. You may be able to regulate the outputs with zeners or small regulators like 78L05.

The transformer can be hand wound in a mini ferrite pot core. you can use 2N2222 or any other fast transistor. The transformer should have 1KV isolation. The dot polarity of TR1 should be properly observed, else it may fail to oscillate or give output.

Diode should be fast recovery type, for less than 100mA use 1N4148. transformer, pri-20-20, sec-60-60, a SWG-AWG to suit the current you

design for, any fast switching transistor would work, no regulation, use regulators like 78L12 if you want, circuit like multivibrator used for flashing LED lights.

Isolated dual power supply from 5V

The Source file in CadSoft EAGLE format is here del00010.zip

Friday, November 14, 2014

DMM range and AC-DC mode Logic

This is the third circuit that you will need to build a Simple Benchtop DMM with no Microcontroller.

Here the U1D and U1B 4093 acts like a de-bouncing circuit for the push keys. The 4029 counts up scrolling to binary values 00, 01, 10, 11 for the four ranges.

The binary value of 4029 is decoded to decimal by 4028 in order to light four LEDs which indicates the range or mode on the front panel. When any of these pushbuttons are pressed and held, the nand schmitt 4093 clocks to scroll the range continuously. The binary output of these counters control CMOS switches 4052 which are analog multiplexers.

DMM range and AC-DC mode Logic

The DPM or DVM gives a readout of an Analog Value or process. The Analog reading we obtain from a Circuit Measurement Jig represents some real world parameter.

In a multi-parameter instrument like DMM, the measurement jig functions and the analog signal routing is done by ganged range selection switches.

Read More here DMM range and AC-DC mode Logic

Wednesday, November 12, 2014

Power supply with battery backup - DMM

This is a simple charger circuit which will work for a light load like a DMM, the Battery can be a sealed maintenance free battery of 9V-2AH or better. The circuit will work best if the Unit is powered on many times daily on regular use, else battery will drain down.

The 555 Astable is used to generate a AC signal from which a negative voltage is generated, A 79L05 which is a low power TO92 equivalent of 7905 a negative -5 volts regulator is used as -5 volts load is less. A TO220 7805 is used for the +5V supply.

Power supply with battery backup - DMM

Many dual supplies are derived from one DC Source. A SMPS solution is the best. A Series Regulator is simple to troubleshoot in comparison to Switching Types, there is no EMI-RFI too.

Power supply with battery backup - DMM

This simple circuit is ok only for Low Current gadgets, Whereas SMPS is green and efficient. In SMPS a greater care for Product Safety is required. In a Linear Supply with Step-Down Mains-Frequency Transformer. The Transformer is the only place, where you look into safety the most. In SMPS it is the PCB, the feedback components and also The High-Frequency (200 kHz) Mains Ferrite Transformer.

Tuesday, November 11, 2014

Build a DMM - LM3914 Analog display

This a part of a complete Benchtop DMM that you can build to learn the internals of a Digital MultiMeter. This is oriented towards learning the measurement aspects and the protection of input circuits.

U2A opamp LF353 is used here as a constant current source, R10-D13-D14 is for protection in case you measure voltage in the ohms range. U1 4052 helps digitally select four different currents, the currents pass thru the unknown resistor to be measured and an voltage developed across the resistor is measured.

U2B is a buffer which passes on the voltage measured to U5A for inversion of polarity as current source is a negative current (current sink). U5B amplifies to the level required for the LM3914 display circuit. U7 555 is used as a de-bouncing for switch SW1 so as to advance counter 4029 to change the range of resistance measurement.

Build a DMM - LM3914 Analog display

Use any FET input dual opamp, TLO72 will work but LM358 will cause error as it is transistor input..

D1, D12 and R8 are to ensure that the FET can be turned off, as the opamp swings from +/-3.5V only, with some FET it needs to be tweaked. LF353 is a Wide Bandwidth Dual JFET Input Operational Amplifier.

Build a DMM - LM3914 Analog display

Saturday, October 18, 2014

Presettable Up-Down Counter Timer

When i had put the near Obsolete digital circuits online in the late nineties. One person who works in a public institution in the usa, wanted a modification of one of my existing circuits. He had those parts the CD40 Series Logic Chips. He wanted to use only those that he had in his Stock.

I made some modifications and sent it to him, that helped him with his task. These things can be done very easily using the Arduino. One could make a programmable Arduino Timer/Counter with a matching Configuring Software without coding, for such people. Easy and Affordable.

Digital Circuits 2 from delabs

Circuit 1 - Digital Timer Clock With Preset using Thumbwheel switch.

A Thumbwheel Switch has to be used in place of DIP switch shown, just know that 1-2-4-8 nibble (4 bit) should be generated by Thumbwheel switch at preset or jam inputs of 4029.

Use CD4511 if 4513 is not available, but circuit has to be changed a bit around 4511


Circuit 2 - 1 Hz or 1 pps crystal clock using CD4060 and 32768 Hz Crystal.


They have not been tested much... The 4513 control pins 8-4-5-3 connections verify, as i did not get the datasheet.

The circuits will work as the concepts are right, but some tweaks in R C values may be required.
the R C values can only be corrected if you have problem in making it work.

The main problem in the R C values may be related to "the reset at 6 for the tens of seconds and the tens of minutes".

Thursday, October 16, 2014

Music Sound to light converter

This was made by me when i was a kid, it was even published in a magazine, i think it will work, it was used on a very old huge ornamental valve philips stereo system in the remote speakers.

Recently i captured this circuit in eagle to publish online, it seems to have a small design error. It worked well for many years. The step-down transformer is used as a step-up here. The secondary winding was around 50mA so the resistance was protecting the 2N2222. (SL100 was used in the original one). C1 and R3 may need tweaking to get the desired adjustment range in R2.
The voltage across the speaker is fed to C1-Gnd, which blocks DC component. R1, R2, R3 form a threshold bias for T1. 2N2222 chops the 12V DC in tune with the music. The chopped DC current flowing in the 12V winding of TR1 is stepped up into AC pulses over 100V, this lights the Neon in flashes synchronizing in real-time with the beats. Known Issues - It does not perform well at low Bass like 20Hz.
Music Sound to light converter
The Source file in CadSoft EAGLE format is here del00005.zip

Tuesday, October 14, 2014

Simple Water operated relay

This was done in my early days, i have upgraded it, it ought to work, reduce the number of transistors to make it less sensitive, also a lower value in place of 10M will reduce its sensitivity, use clamping diodes to protect.

BD139 is used to drive the relay as it has good Ic. So you can even use a low ohm relay. If a Relay resistance is high its quality is higher, its power consumption is less and it needs thinner wire SWG-AWG. T2 and T3 form a darlington pair which drives T1. LED1 shows that the water level has reached the top of tank and also that the Relay is energised. D1 a freewheeling diode. R3 10M ensures that the high gain input does not float, yet the low leakage current thru the water is not drawn away by the 10M. R2 limits base current in case water is saline.
Simple Water operated relay

Monday, September 08, 2014

Triac based Lamp Dimmer power control

This is a phase angle control of a Triac which is a evolution from an SCR. The 50 Hz or 60 Hz Sine wave of mains can be turned on at any point after the Zero Crossing.

Design Notes - Power Electronics - 03

Triac based Lamp Dimmer power control

The Voltage ramps up in the sine wave which gives a near "Linear" slope which can be used to trigger the ON at a time delay after zero crossing when the voltage is zero. This is like a PWM but works on low frequency only. Some of the early SMPS(HV for TV and Mains Inverter) by Siemens were built around SCRs. Turning off a SCR is a difficult job for a designer, MOSFETS and IGBT are now used for PWM drive stages.

High Energy Circuits

You can use it with a bulb to vary brightness of bulb, this is a live circuit it can give a shock, enclose in plastic box, the pot should have a plastic knob, use a fuse, you can also use it for temperature control of soldering irons.

The Source file in CadSoft EAGLE format is here del00004.zip

Friday, September 05, 2014

80C39 and MCS48 based Process Controller

The Early Microcontroller : 80C39 is a CMOS Version of 8048 the one that preceded 8031-8051. MCS48 is the set for that, MCS51 is the current set.

Digital to Analog Converter with uC Watchdog is the front end and an external  hardware watchdog of an early kind. These are simple but robust circuits and worked well in noisy environments.

Here is an example project for 80C39-8748-8749 microcontroller. This code was written by me, and it works. But the documentation is not complete or may have errors.

 80C39 and MCS48 based Process Controller - CPU

Process Controller code here 80C39 Code for MCS48 (editable spreadsheet online)

The circuit for these are on this page along with other circuits. This may be difficult to put together now. But

the code and hardware is near compatible to 8051 uC. Now there are may types of ADC and uC.

Voltage to Frequency Converter AD Interface is the analog front end of this instrument. Uses a LM331 VCO. The Signal conditioning too is integrated in this circuit.

This was supposed to have Analog in and Analog out. Some parts of the circuit may be in the 80C51 page. This has ramp-up and ramp-down settings for the Increment and Decrement buttons. This helps setting setpoint quickly. There is also debouncing for the pushbutton.

Tuesday, September 02, 2014

Solid State Relay - Common

This is a DC controlled Solid State Relay which can turn 230V AC equipment on and off. The output is like a NO normally open contacts of a relay and have to be in series with the Load like any other switch.

Solid State Relay - Common
This should not be used for large inductive loads like big motors. The Q1 transistor limits the current thru the LED by providing an alternate path for more current. The DC input can be from 3V to 20V.

The Triac can be chosen depending on current in the load. Look for datasheets and applications at STMicroelectronics for BTA41600 triacs. MOC3041 zero crossover opto-diacs.

Read more at my main page - Solid State Relays - SSR I used to make them long ago.

Solid State Relay - Common

Friday, August 15, 2014

Digital to Analog Converter with uC Watchdog

This is the continuation of the earlier post. Part of 80C39 based Process Controller. In this schematic you can see the Watchdog and D/A Converter.

80C39 and MCS48 based Process Controller is the main circuit that has the LED 7 segment display for output and push keys for input. The old form of Human Machine Interface - HMI.

Digital to Analog Converter with uC Watchdog

My first observation of a very complex watchdog in action was an Agilent(hp) Benchtop Multimeter based on this 8048 family of 1st generation microcontrollers that did not even have a UART among many things.

At that time CMOS was just making an entry and FLASH memory was unheard of. The UV Eprom was the way firmware was set on these systems. These consumed a lot of power. 80C39 was the CMOS one.

The  4040 counter derives a slow clock from the 7555 timer. The counter has to be reset by firmware by periodically sending a reset pulse on port pin P2.7 to say "Alls Well".

If the firmware or uC "hangs" or due to EMI or Spikes the uC gets into an endless loop. Then the "Alls Well" pulses stop coming. The 4040 keeps counting till Q10 output goes high and resets the uC or can we say Wakes it up rudely.

The D/A converter was used to get the 1-5 V to obtain 4-20 mA control Signal to operate the Actuators like a Motor Drive or Heaters in a Industrial Process control System.

Thursday, August 14, 2014

Regulated High Voltage Power Supply

The Circuit below is a paper design and not tested. It can be used for education and information, this can help you make your own design. Please do not just wire it up and expect it to work.

Regulated High Voltage Power Supply

Now let me see if i can explain the circuit, This is a regulated AC power supply. This circuit uses the Mosfet to turn off when voltage goes beyond a reference point. That means it just chops the Sine wave above a point, that also implies that the output may not be pure sine and may have harmonics. The Transformer if well designed may smoothen the chops. Even a Series Inductor or Resonant Circuits may reduce harmonics.

The opto coupler 4N50 Provides isolation and good Current Transfer Ratio. That may mean you may not get a shock and that even a small current signal in Opto-LED will give a saturated or Low Impedance in Opto-Transistor. The Mosfet is used like a Impedance Control switch turned On-Off by Opto. The Optocoupler diode is controlled by the Opamps which work Closed loop. The transformer output is compared with reference to drive opto-led.

This Circuit is based on Teledyne Solid State data book application note. They may not be making these parts anymore but they are available from others.

Regulated High Voltage Power Supply - del20032

Wednesday, August 13, 2014

Switching Battery Charger with L296

This is a a circuit from my  Power Supplies Section.  There may be some documentation errors in my circuits. If you are used to building and troubleshooting circuits then it is ok.

This circuit is derived from an application note of L296, It is a Power Switching Regulator from ST Micro. U1A is wired as a differential amplifier and U1B a High Gain Comparator. C4 and C5 are parallel for lower ESR. Equivalent series resistanc Fast switching diode used is BYW80.

Switching Battery Charger with L296

L296 is a switch mode power controller here. In this NTE327 or 2N5038 is used to boost the current output. This transistor is both high current and fast switching. U1A, LM358 measures the load current by reading the voltage across shunt R6 and compared to a current limit setting at R14 using U1B to give a load current control. R7-R8 give a voltage feedback for voltage limit.

Use MFR 1% for all Resistors, 33E means 33 ohms, 22K means 22 kilo ohms, 1M is 1 megohm. 10T tp means ten turn trimpot. "Analog Ground" and "Digital Ground" must be linked at power supply only, avoid loops, let grounds radiate from a ground plane. Unused inputs of logic and opamps pull up or down to avoid oscillations and noise

Sunday, July 20, 2014

Audio Visual User Interface with Ack

This circuit is an User Interface part of a Security Alertness Monitor that i designed decades ago. The circuits are here - Digital Circuits - Part 1 The RAM and RTC part is missing, i will add later. It is without uC or Software. Only CMOS Logic.

555 Buzzer and Pushbutton User Interface

Every Hour "+V UR" Goes High for 120 Seconds. The Buzzer Sounds and a Red LED turns on. The Guard has to respond by Pushing the Switch. The Green Light Flashes and the external Flip-Flop logic brings "+V UR" Low, The Buzzer Sound Stops and Red Light Goes off..

If not pressed the Sound Stops after 120 Seconds and even the Red light goes off then. This records a Non-Alert Hour in the RAM for that Day. The Ram Stores 9 Days alertness status.

You could try porting this project into a 89C2051 for learning product and interface design.

Saturday, July 19, 2014

Display On Timer with 555

This is related to the earlier post. This was done to save battery power. The output of some equipment may be in the form of LED Annunciators In the Security Guard Monitor, an Array of 24 LEDs would show the Status of alertness along with the day, this was scrollable.

Display On Timer with 555

When the "Display Now" is pressed it triggers the Monostable Multivibrator made of a 555. The output "EN" goes high for the time duration defined by C27 and R71.

The 555 output as you know can drive more than 200mA for quite some time without much heating up. Many LEDs can be driven with the current limit resistors. I used CMOS chips to drive the LEDs, this circuit was used for the Logic only.
  .
This circuit was a part of the user interface like the previous one. You could use it for voltmeters or even backlight for LCD.

Example - When you press the switch the Time of a clock can be seen in darkness for a few seconds.

Wednesday, July 16, 2014

Power Supply with Battery Backup

This is an incomplete version of the power supply used for the Alertness Monitor with hourly LED Display. This circuit used a Dual Color LED. Green meant Alert and Red meant No Alert or acknowledge press.

Power Supply with Battery Backup

I can write here only in "Electronic English". Focus on the tech not grimmer. It may be like Pascal with a touch of Acronyms, codes and circuit axioms.

The top part is a 5V regulator with 0.7 Diode boost, means 5.7 V DC. The battery was floating on this point above the zener Z4, that connection comes from outside. A protection fuse maybe needed in case Zener draws more current. The Zeners were test selected to get above 6V along with the diode.

The second supply is to drive the LED array and Relay. This second battery supply was needed to prevent the RAM from losing data and also the CMOS logic getting reset, when the relay solenoid operates. Even when the Display Now switch is pushed, the current is large and the pulse could reset digital circuit.

The battery was used very less, it worked during the power failures for short duration between mains and generator switching. This circuit is not meant for in situations when battery drains are high.

Monday, June 16, 2014

Telephone status indicator with LED

This will monitor telephone status without loading the telephone line, this way if you have two phones in parallel you will know if one of them is busy. Connect the two ends of circuit in parallel to phone lines.

Telephone LED status indicator

D1 to D4 make a bridge so that LED's are powered in correct polarity. LED1 indicates line ok no broken line, LED3 can light only when a 12V Zener breaksdown, this shows if line is busy or free, so that you dont go online when someone is talking on the phone in another room. LED2 lights on an incoming call ringing signal. This is a higher voltage at least in older exchanges, so the cap protects the LED, and LED Lights when a AC ringing signal occurs. D6 protects LED2 from reverse polarity.

The Source file in CadSoft EAGLE format is here del00003.zip

Sunday, June 15, 2014

Drive SCR thyristor with 555

This circuit gives a burst of pulses to fire 2 SCRs, when pin 4 is taken to 12V the SCR is turned on, to use this circuit you need 12V short pulses phase shifted with respect to AC sine wave on bridge, like this you can control the bridge from near 0% to near 100% ON.

That way battery banks can be charged, electroplating can be done, current and voltage can be controlled with opamps, thyristors are very rugged compared to transistors and MOSFETS in that order.

Drive SCR thyristor with 555

Edit the circuit eagle cad file del00015.zip,

Thursday, June 12, 2014

OR gate with two 555

This shows how to OR gate two 555, when one 555 cycles at a low frequency a valve turns on an off, the second 555 stretches the ON duration of the pulse with a diode OR gate.

OR gate with two 555

The OR output uses sample and hold to get the stable analog data from a sensor after the actuator has gone OFF, this ensures correct reading.

555 is a fundamental Mixed Signal Circuit as it can be made into a VCO using Pin-5. If you see old exar databooks, you can see 555 and PLL and Tone decoders all applications compiled in one base. I feel the Venerable Signetics 555 "Architecture" and Intersil ICL8038 'CMOS' were inspiration behind early communication chip designs, Moving from Bakelite Telephones to Compact Push Button Electronic Phones and more.

Edit the circuit eagle cad file del00014.zip, eagle cad has a free version for windows and linux.

Saturday, May 17, 2014

555 watchdog for uC and uP systems

When the microcontroller hangs due to a spike, EMI or RFI etc. the 7555 will reset the uC, if proper power supply design is done above circuit can also give a clean power on reset, the above circuit you should modify to suit your design.

80C39-8749 MCS-48 Examples and code

Better still use a uC with watchdog built in like some atmel chips, or use the watchdog chips from maxim which can also do RAM battery management.

The circuit was developed over a old TI application note, 7555 i think fairchild may be making it, 7555 is CMOS version of 555 timer, advantage of 7555 is that it can go to higher frequency, low power consumption, the disadvantage is its output drive mA is not as good as 555. now why i put it here was that you can see how charge and discharge paths are separated with diodes.

555 watchdog for uC and uP systems

See Larger Circuit. 555 Watchdog
Edit the circuit eagle cad file del00013.zip,

Saturday, May 10, 2014

Fixed frequency Variable duty cycle with 555

This circuit is based on a very old application note from exar, in this the frequency is fixed by IC1 and IC2 -P1 controls the duty cycle. you need to compute the R and C values to get what you need,  LM555 data sheet.

You have to study the circuit and do something more innovative perhaps, just copying is ok for learning but it will get you nowhere, so learn and then innovate, the eagle circuit is given below so you can learn by editing it, also design a PCB with it, and you can even make a PCB at home to learn, but it is always good to get PCBs done by a PCB vendor, but you should understand his problems, then you will design well, so make a few PCBs.

Fixed frequency Variable duty cycle with 555

Edit the circuit eagle cad file del00012.zip,

Friday, May 02, 2014

Pulse width modulation using 555

IC1 astable gives a fixed square wave at pin 3, C1 and R1 derive uS trigger pulses from IC1 and this will trigger IC2 monostable or single shot, the voltage at pin 5 of IC2 will change the pulse width output of IC2, to get it working all the three RC combinations have to be figured out.

Optical Obstacle Switch.

You can even build a small SMPS with this or even control the temperature of your soldering iron using the SSR solid state relay circuits in power section, then you need to think and design the cycle time of a soldering iron heat control system, it will be in seconds but then above circuit is running at audio frequencies, then you have to work that out yourself..

Pulse width modulation using 555

Friday, April 11, 2014

Three Opamp Differential Instrumentation

This is the best Instrumentation OpAmp, Great CMRR, ensure supply has no ripple and keep analog and digital grounds separate. Ri can be replaced with a trimpot and resistor to alter gain. Connect a preset ends to pins 1 and 8 and preset wiper to VCC for Offset Null when high gains are configured.

Thermocouple and Pt-100 RTD

The Input zeners and diodes form a protective clamp for all voltages above VCC-VDD. If supply is changed to +12 -12 change zeners to 12V zeners. Use similar Zeners at output to protect Output from being zapped by overvoltages or high energy - voltage*frequency transients. Add plastic capacitors across Rf for damping AC operation or ripple. Also avoid floating inputs by providing a bias.

3 Op-Amp Differential Instrumentation Amp

Vout = (Vp - Vn) * (2Rf+Ri)/Ri

Related Reading

Wednesday, April 09, 2014

Buffer or Unity Gain Op-Amp

If output impedance of a point is a high value then connecting another circuit at that point will load it resulting in malfunction or error. Buffers are used as interface between circuits. Low impedance of an output means it can source sink lot of current, when you need 2 opamps use LF353 or TL072 which are dual opamps.

A non-inv FET input is the best buffer, for inverting buffer use high R values Using very high R values like 2.2M or higher requires a glass epoxy PCB and guard rings around pin 2, 3 to prevent leakage currents on the PCB reaching the PINs. Also moisture and dust has to be prevented by using RTV coating or Varnish. Use 78L05 79L05 for the dual supply required by this circuit.

Buffer or Unity Gain Op-Amp

Vout = -(Vin) for inverting

Vout = Vin for non-inverting

Related Reading

Friday, April 04, 2014

Differential Amplifier - Op-Amp Circuits

This amplifies the difference between two inputs Vp and Vn the low impedance of this configuration is a drawback, but can be used in analog computing. Optimum VCC VDD can be +12/-12. AC signals common to Vp and Vn are canceled by this configuration.

Use a capacitor like 10nF plastic from pin 2 to 3 or across R2 to make circuit stable. For AC applications use LF351 TLO71 as they have good slew rate and also are FET inputs. For AC applications use a capacitor (1uF) in series with Ri to block DC Components. The Inputs have asymmetrical input impedance this affects CMRR, also use 1% tolerance MFR resistors for Rf and Ri.

Differential Amplifier - Op-Amp Circuits

Vout = (Vp - Vn) * (Rf/Ri)

Related Reading

Thursday, March 13, 2014

Two Op-Amp Differential Amplifier

The Input Impedance of this module is very high and is symmetric. This circuit can be used for strain gauges and for four wire measurements. If inputs are in mV use OP07. The merit is that it uses only 2 OpAmps yet has high differential Input Impedance.

Dual Differential Amp - Interactive Simulation

The Outputs of Opamps are low impedance but still have limits they cannot drive more than a few mA of Current into the Load. If low ohmic value loads are to be applied use external transistors as amplifiers. If inputs Vn-Vp are floating Outputs may be random or Oscillating, it is good to have a bias network of 10M resistors to a potential even zero or COM this enables Vout when input floats.

Two Op-Amp Differential Amplifier

Vout = (Vp - Vn) * (Rf+Ri)/Ri

Related Reading

Precision Instrumentation Amplifiers 

Wednesday, March 12, 2014

Non-Inverting Amplifier - Op-Amp Circuits

The input impedance of this module is very high, if U1 is OP07 it is in mega ohms, use CA3140 or LF356 fet input opamps to get 1 tera ohm input impedance, but for high gains OP07 is better as it is ultra low offset, this is a good amplifier for sensor outputs, as in a DC Circuit.

Non-Inverting Opamp Interactive Simulation

The zener diodes protect the opamp inputs, R1 limits current during high voltage inputs and R1 and C1 form a filter to remove ac components C1 should be a plastic type as ceramic and electrolytic caps are leaky. A large C1 will slow the response time, the sum of Ri + Rf should be greater than 5k so that output is not loaded. also do not connect output to voltages more than vcc/vdd it will blow Opamp.

Non-Inverting Amplifier - Op-Amp Circuits

Vout = Vin * (Rf + Ri) / Ri

Related Reading

Noninverting Amplifier - Circuit Design Tutor 

Monday, March 10, 2014

Inverting Amplifier - Op-Amp Circuits

Input Impedance of this module is Ri as pin 2 is at virtual ground, the opamp with feedback tries to maintain pin 2 and 3 at same potential pin 3 is at 0V hence pin 2 is at virtual ground. Clamping diodes protect OpAmp, Rf + Ri is between 5kE and 1ME as an opamp may be able to drive around say 5mA max.

Inverting Opamp - Interactive Simulation

Current into node pin 2 = Vin/Ri if Vin is +ve it raises potential at pin 2, in order to bring it to 0V the OpAmp sucks away the current by turning its output negative the current leaving pin 2 node is also Vin/Ri. Then Vout is given by Vin/Ri * Rf as per V=IR ohms law. Most OpAmps output swings around 1v less than VCC/VDD for full swing use CA3130 this is a FET input OpAmp, and has low bias currents in pico amps.
Inverting Amplifier - Op-Amp Circuits

Vout = Vin * (-1) * (Rf/Ri)

Related Reading

Circuits by Application

Analog Circuits

  1. Battery Level Indicator
  2. Simple Sample and Hold
  3. Sample and Hold Standby
  4. Voltmeter Attenuator
  5. Precision Current Source
  6. Opamp Supply Virtual Ground

SCR and Triac

  1. Solid State Relay
  2. Normally Closed AC SSR
  3. AC-AC-SSR
  4. DC-DC SSR
  5. 2N2646 based Pulser
  6. Drive SCR thyristor

Mains Power

  1. Flashing Neon Lamp
  2. Dimmer power control
  3. Edison Bulb Life Extend
  4. Mains Current LED
  5. Mains Voltage LED

Digital Circuits

  1. Simple Digital Counter
  2. Running Lights
  3. Frequency Divider
  4. Crystal Oscillator
  5. Simple High speed switch
  6. Differential TTL converter

Measureall DMM

  1. Ohmmeter Measure Resistance
  2. Precision Digital Attenuator
  3. Precision Amplifier

Mixed Circuits

  1. Monostable Multivibrator
  2. Digital to Analog
  3. LM311 Oscillator
  4. PLL using 4046
  5. VCO with LM331
  6. BCD Thumbwheel to Analog
  7. V to F Converter ICL8038
555 Circuits
  1. OR gate with two 555
  2. fixed frequency duty cycle
  3. Pulse width modulation
  4. Astable Multivibrator
  5. uC Reset Generator
  6. LM555 Voltage Doubler
  7. 555 Power Oscillator
Discrete Circuits
  1. Isolated dual supply
  2. Sound to light converter
  3. Water operated relay
  4. Telephone Indicator
  5. Passive volume control
  6. RS232 Opto-Isolation
  7. Voltage Level Indicator
  8. Relay Driver
  9. Constant Current LED
  10. Voltage Doubler
  11. FET Current Source
Opamp Circuits
  1. Three Opamp Differential
  2. Two Opamp Differential
  3. Buffer Opamps
  4. Differential Op-Amp
  5. Inverting Opamp
  6. Non Inverting Opamp
  7. Digital gain control
  8. Square Triangle Oscillator
  9. Dual Polarity Output Amps
  10. Ammeter Precision Rectifier
  11. Voltage / Current 4-20 mA
  12. Current Source for RTD
Power Electronics
  1. Dual Power Supply
  2. Single Power Supply
  3. Battery Backup Supply
  4. 5V 1A Supply LM2575
  5. 5V Power Supply L296
  6. Dual Power Supply
  7. Tubelight Electronic Choke
  8. Voltage Doublers Multipliers
  9. White LED Lamp on Ni-Cd

uC and uP

  1. PC RS232 with MAX232A
  2. Battery Backup SRAM
  3. watchdog uC uP systems
Instrumentation Circuits
  1. Mains monitor LM3914
  2. Simple Mains monitor
  3. single digit voltmeter
  4. High Resistance Meter
  5. Diode Thermometer
  6. Function Generator
  7. Diode Leakage Tester
  8. Analog LED Ohm Meter
  9. Millivolt Source Current Loop
Process Control
  1. AD590 - temperature
  2. Thermocouple Amplifier
  3. Linearizing Thermocouple
  4. Thermocouple Amplifier
  5. 0-1V to 4-20 mA
  6. 1-5V to 4-20 mA
  7. InfraRed - Optical Switch
  8. InfraRed Detector